Binary Tree



6-2 Binary Trees

A binary tree can have no more than two descendents. In this section we discuss the
properties of binary trees, four different binary tree traversals

e Properties

e Binary Tree Traversals
e Expression Trees

e Huffman Code



Binary Trees

* A binary tree is a tree in which no node can
have more than two subtrees; the maximum
outdegree for a node is two.

* In other words, a node can have zero, one, or
two subtrees.

* These subtrees are designated as the left
subtree and the right subtree.
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FIGURE 6-5 Binary Tree
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FIGURE 6-6 Collection of Binary Trees




Some Properties of Binary Trees

* The height of binary trees can be mathematically
predicted

* Given that we need to store N nodes in a binary
tree, the maximum height is

H =N

A tree with a maximum height is rare. It occurs when all of
the nodes in the entire tree have only one successor.



Some Properties of Binary Trees

* The minimum height of a binary tree is
determined as follows:

I_Imin — [IOQZ N]+l

For instance, if there are three nodes to be stored in the
binary tree (N=3) then H; =2.



Some Properties of Binary Trees

* Given a height of the binary tree, H, the minimum
number of nodes in the tree is given as follows:



Some Properties of Binary Trees

e The formula for the maximum number of nodes is
derived from the fact that each node can have
only two descendents. Given a height of the

binary tree, H, the maximum number of nodes in
the tree is given as follows:



Some Properties of Binary Trees

* The children of any node in a tree can be accessed by

following only one branch path, the one that leads to the
desired node.

e The nodes at level 1, which are children of the root, can be
accessed by following only one branch; the nodes of level 2

of a tree can be accessed by following only two branches
from the root, etc.

* The balance factor of a binary tree is the difference in
height between its left and right subtrees:

B=H, —H,
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FIGURE 6-6 Collection of Binary Trees
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Some Properties of Binary Trees

* In the balanced binary tree (definition of Russian
mathematicians Adelson-Velskii and Landis) the
height of its subtrees differs by no more than one
(its balance factoris -1, 0, or 1), and its subtrees
are also balanced.



Complete and nearly complete binary trees

A complete tree has the maximum number of
entries for its height. The maximum number is
reached when the last level is full.

* Atreeis considered nearly complete if it has
the minimum height for its nodes and all
nodes in the last level are found on the left



(a) Complete trees (at levels 0, 1, and 2)

(b) Nearly complete trees (at level 2)

FIGURE 67 Complete and Nearly Complete Trees
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Binary Tree Traversal

* A binary tree traversal requires that each node
of the tree be processed once and only once
in a predetermined sequence.

* |n the depth-first traversal processing process
along a path from the root through one child
to the most distant descendant of that first
child before processing a second child.



G ® O

2 3 1 3 1 2
Left Right Left Right Left Right
subtree  subtree subtree  subtree subtree  subtree

(a) Preorder traversal  (b) Inorder traversal (c) Postorder traversal

FIGURE 6-8 Binary Tree Traversals
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FIGURE 6-9 Binary Tree for Traversals
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ALGORITHM 6-2 Preorder Traversal of a Binary Tree

Algorithm preOrder (root)

Traverse a binary tree in node-left-right sequence.
Pre root is the entry node of a tree or subtree
Post each node has been processed in order

1 1f (root 1s not null)

1 process (root)
2 prelrder (leftSubtree)
3 preOrder (rightSubtree)
2 end 1if
end preQrder
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(a) Processing order

(b) “Walking” order

FIGURE 6-10 Preorder Traversal—AB CDEF
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Algorithmic Traversal of Binary Tree
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ALGORITHM 6-3
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Algorithm inQOrder (root)

Traverse a binary tree in left-node-right sequence.
Pre root is the entry node of a tree or subtree
Post each node has been processed in order

1 if (root 1s not null)

1 1inOrder (leftSubTree)
2 process (root)
3 1nOrder (rightSubTree)

2 end 1if

end inOrder
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ALGORITHM 6-4

Postordler Traversal of a Binary Tree

Algorithm postOrder (root)

Traverse a binary tree in left-right-node sequence.
Pre root is the entry node of a tree or subtree
Post each node has been processed in order

1 if (root is not null)
1 postOrder (left subtree)
2 postOrder (right subtree)
3 process (root)

2 end if

end postOrder
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ALGORITHM 6-5 Breadth-first Tree Traversdl

Algorithm breadthFirst (root)
Process tree using breadth-first traversal.
Pre root 1s node to be processed
Post tree has been processed
1 set currentNode to root
createQueue (bfQueue)
3 loop (currentNode not null)
1 process (currentNode)
2 1f (left subtree not null)
1 engueue (bfQueue, left subtree)
3 end if
4 if (right subtree not null)
1 enqueue (bfQueue, right subtree)
5 end if
6 1f (not emptyQueue(bfQueue))
1 set currentNode to dequeue (bfQueue)

7 else
1 set currentNode to null
8 end if
4 end loop

5 destroyQueue (bfQueue)
end breadthFirst
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FIGURE 6-14 Breadth-first Traversal

26



ax(b+:::)+d|

FIGURE 6-15 Infix Expression and lts Expression Tree
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FIGURE 6-16  Infix Traversal of an Expression Tree
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ALGORITHM 6-6

nfix Expression Tree Traverscl

Algorithm infix (tree)

Print the infix expression for an expression tree,
Pre tree is a pointer to an expression tree
Post the infix expression has been printed

1 if (tree not empty)

1 if (tree token is an operand)
1 print (tree-token)
2 else
1 print (open parenthesis)
2 infix (tree left subtree)
3 print (tree token)
4 infix (tree right subtree)
5 print (close parenthesis)
3 end if
2 end if
end infix
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ALGORITHM 67 Postfix Traversal of an Expression Tree

Algorithm postfix (tree)

Print the postfix expression for an expression tree,
Pre tree is & pointer to an expression tree
Post the postfix expression has been printed

] 1f (tree not empty)

conlinted
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ALGORITHM 6-7

Postlix Traversal of an Expression Tree (confinue

l postfix (tree left subtree)
2 postflx (tree right subtree)
3 print (tree token)

2 end 1f

end postfix
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ALGORITHM 6-8

Prefix Traversal of an Expression Tree

Algorithm prefix (tree)

Print the prefix expression for an expression tree.
Pre tree 1s a polnter to an expression tree
Post the prefix expression has been printed

1 1f (tree not empty)

1 print (tree token)
2 prefix (tree left subtree)
3 prefix (tree right subtree)
2 end if
end prefix
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